1,512 research outputs found

    Using remote vision: The effects of video image frame rate on visual object recognition performance

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.The process of using remote vision was simulated in order to determine the effects of video image frame rate on the performance in visual recognition of stationary environmental hazards in the dynamic video footage of the pedestrian travel environment. The recognition performance was assessed against two different video image frame rate variations: 25 and 2 fps. The assessment included a range of objective and subjective criteria. The obtained results show that the effects of the frame rate variations on the performance are statistically insignificant. This paper belongs to the process of development of a novel system for navigation of visually impaired pedestrians. The navigation system includes a remote vision facility, and the visual recognition of the environmental hazards by the sighted human guide is a basic activity in aiding the visually impaired user of the system in mobility

    Fuzzy Nambu-Goldstone Physics

    Get PDF
    In spacetime dimensions larger than 2, whenever a global symmetry G is spontaneously broken to a subgroup H, and G and H are Lie groups, there are Nambu-Goldstone modes described by fields with values in G/H. In two-dimensional spacetimes as well, models where fields take values in G/H are of considerable interest even though in that case there is no spontaneous breaking of continuous symmetries. We consider such models when the world sheet is a two-sphere and describe their fuzzy analogues for G=SU(N+1), H=S(U(N-1)xU(1)) ~ U(N) and G/H=CP^N. More generally our methods give fuzzy versions of continuum models on S^2 when the target spaces are Grassmannians and flag manifolds described by (N+1)x(N+1) projectors of rank =< (N+1)/2. These fuzzy models are finite-dimensional matrix models which nevertheless retain all the essential continuum topological features like solitonic sectors. They seem well-suited for numerical work.Comment: Latex, 18 pages; references added, typos correcte

    Non-thermal plasma technology for the abatement of NOx and SOx from the exhaust of marine diesel engine

    Get PDF
    Non-thermal plasma based technology is proposed to the abatement of NOx and SOx of the exhaust gas from marine diesel engine. Proposed technology uses electron gun and microwave energy to generate the plasma. Fundamentals of non-thermal plasma and chemistry are presented with a set of simulation results of the reduction of NOx and SO2 for a typical two stoke marine diesel exhaust engine which is supported by an experimental results obtained with microwave plasma. A new scheme is also proposed in this paper to generate required plasma for the treatment of NOx and SOx form high exhaust flow rate

    Quantum Fields on the Groenewold-Moyal Plane: C, P, T and CPT

    Full text link
    We show that despite the inherent non-locality of quantum field theories on the Groenewold-Moyal (GM) plane, one can find a class of C{\bf C}, P{\bf P}, T{\bf T} and CPT{\bf CPT} invariant theories. In particular, these are theories without gauge fields or with just gauge fields and no matter fields. We also show that in the presence of gauge fields, one can have a field theory where the Hamiltonian is C{\bf C} and T{\bf T} invariant while the SS-matrix violates P{\bf P} and CPT{\bf CPT}. In non-abelian gauge theories with matter fields such as the electro-weak and QCDQCD sectors of the standard model of particle physics, C{\bf C}, P{\bf P}, T{\bf T} and the product of any pair of them are broken while CPT{\bf CPT} remains intact for the case Ξ0i=0\theta^{0i} =0. (Here xΌ⋆xΜ−xΜ⋆xÎŒ=iΞΌΜx^{\mu} \star x^{\nu} - x^{\nu} \star x^{\mu} = i \theta^{\mu \nu}, xÎŒx^{\mu}: coordinate functions, ΞΌΜ=−ΞΜΌ=\theta^{\mu \nu} = -\theta^{\nu \mu}= constant.) When Ξ0i≠0\theta^{0i} \neq 0, it contributes to breaking also P{\bf P} and CPT{\bf CPT}. It is known that the SS-matrix in a non-abelian theory depends on ΞΌΜ\theta^{\mu \nu} only through Ξ0i\theta^{0i}. The SS-matrix is frame dependent. It breaks (the identity component of the) Lorentz group. All the noncommutative effects vanish if the scattering takes place in the center-of-mass frame, or any frame where Ξ0iPiin=0\theta^{0i}P^{\textrm{in}}_{i} = 0, but not otherwise. P{\bf P} and CPT{\bf CPT} are good symmetries of the theory in this special case.Comment: 18 pages, 1 figure, revised, 2 references adde

    On Time-Space Noncommutativity for Transition Processes and Noncommutative Symmetries

    Full text link
    We explore the consequences of time-space noncommutativity in the quantum mechanics of atoms and molecules, focusing on the Moyal plane with just time-space noncommutativity ([x^ÎŒ,x^Îœ]=iΞΌΜ[\hat{x}_\mu ,\hat{x}_\nu]=i\theta_{\mu\nu}, \theta_{0i}\neqq 0, Ξij=0\theta_{ij}=0). Space rotations and parity are not automorphisms of this algebra and are not symmetries of quantum physics. Still, when there are spectral degeneracies of a time-independent Hamiltonian on a commutative space-time which are due to symmetries, they persist when \theta_{0i}\neqq 0; they do not depend at all on Ξ0i\theta_{0i}. They give no clue about rotation and parity violation when \theta_{0i}\neqq 0. The persistence of degeneracies for \theta_{0i}\neqq 0 can be understood in terms of invariance under deformed noncommutative ``rotations'' and ``parity''. They are not spatial rotations and reflection. We explain such deformed symmetries. We emphasize the significance of time-dependent perturbations (for example, due to time-dependent electromagnetic fields) to observe noncommutativity. The formalism for treating transition processes is illustrated by the example of nonrelativistic hydrogen atom interacting with quantized electromagnetic field. In the tree approximation, the 2s→1s+Îł2s\to 1s +\gamma transition for hydrogen is zero in the commutative case. As an example, we show that it is zero in the same approximation for Ξ0i≠0\theta_{0i}\ne 0. The importance of the deformed rotational symmetry is commented upon further using the decay Z0→2ÎłZ^0 \to 2\gamma as an example.Comment: 13 pages, revised version, references adde

    Frequency-sweep examination for wave mode identification in multimodal ultrasonic guided wave signal

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Ultrasonic guided waves can be used to assess and monitor long elements of a structure from a single position. The greatest challenges for any guided wave system are the plethora of wave modes arising from the geometry of the structural element which propagate with a range of frequency-dependent velocities and the interpretation of these combined signals reflected by discontinuities in the structural element. In this paper, a novel signal processing technique is presented using a combination of frequency-sweep measurement, sampling rate conversion, and Fourier transform. The technique is applied to synthesized and experimental data to identify different modes in complex ultrasonic guided wave signals. It is demonstrated throughout the paper that the technique also has the capability to derive the time of flight and group velocity dispersion curve of different wave modes in field inspections. © 2014 IEEE
    • 

    corecore